

Macalloy 1030

The Macalloy 1030 Post Tensioning System consists of high tensile alloy steel bars in diameters from 25mm to 75mm, provided with cold rolled threads for part or full length, together with a range of fittings. Bars from 25mm to 40mm diameter obtain their specified properties by cold working. Bars of 50mm and 75mm diameter obtain their specified properties via a quenching and tempering process.

Sizes

Macalloy bars of standard quality are available in lengths up to 11.8m

for diameters between 25mm and 50mm. Greater tendon lengths can be obtained by joining Macalloy bars together with threaded Macalloy threaded Macalloy couplers.

Non-standard bar diameters can also be provided by arrangement. Physical parameters of Macalloy 1030 bar are given in table 1.

Table 1: Range of Macalloy 1030 Bar										
Nominal	Cross		Mass	Major diameter	Minimum hole					
Diameter	sectional area	Macalloy 1030	Macalloy S1030 Stainless	of threads	diameter in Steelwork					
mm	mm²	kg/m	kg/m	mm	mm					
20	322	-	2.57	22.0	24					
25	530	4.17	4.2	28.9	31					
26.5	572	4.49	-	30.4	33					
32	847	6.65	6.65	36.2	40					
36	1075	8.44	-	40.2	44					
40	1320	10.36	10.36	45.3	49					
50	1963	15.66	15.66	54.8	59					
75	4185	32.86	32.86	77.2	82					

Steel Quality

Macalloy 1030 is a carbon-chrome steel with a composition designed to give the specified properties. All bars are hot rolled. Diameters from 25mm to 40mm are cold worked by stretching. The stretching load and permanent elongation are predetermined by preliminary tests and the properties are monitiored during production to ensure that the bars as supplied comply in all respects with the provisions of BS4486.

Bars of 50mm and 75mm diameter are heat treated after rolling at a controlled temperature and time to ensure that the steel achieves the mechanical properties stated in table 2. Rigorous inspection and testing is carried out, both during and after treatment, to ensure consistent tensile properties. The mechanical performance of the bar is monitored through the tensile testing of machined specimens rather than section testing.

Macalloy S1030

Stainless Macalloy S1030 bars in diameters from 20mm to 75mm are made from precipation hardened stainless steel.

Macalloy S1030 bars are available

in lengths up to 6m for all diameters from 20mm to 75mm.

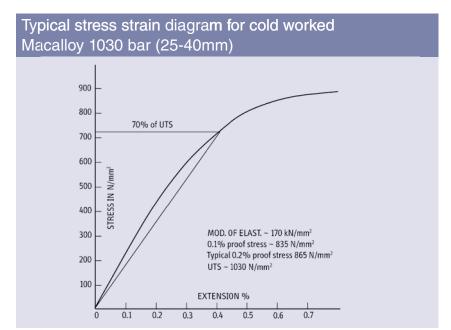
Macalloy S1030 has very good general corrosion properties, similar to grades 1.4305 (303) and 1.4301 (304) austenitic stainless steel bars. In industrial atmospheres some surface discolouration may occur over a period of time.

Macalloy S1030 is a martensitic nickel-chrome alloy steel, hardened during manufacture to attain the specified properties.

The mechanical properties of both Macalloy 1030 and S1030 bars are listed in table 2.

Table 2: Mechanical Properties

	<u> </u>			
Grade	Nominal ultimate tensile strength	Nominal 0.1% proof stress	Minimum elongation	Approximate modulus of elasticity
	N/mm²	N/mm²	%	kN/mm²
Macalloy 1030 25-40mm	1030	835	6	170*
Macalloy 1030 50-75mm	1030	835	6	205
Macalloy S1030 20-75mm	1030	835	10	185


^{*}Secant Modulus of Elasticity in range 5 - 70% UTS

Strength

The specified characteristic failing loads and 0.1% proof loads for Macalloy and Macalloy S1030 bar steels are given in Table 3.

Bars can be supplied with nuts, washers, plates, or couplers as required. All fittings are designed to exceed the failing load of the threaded bars.

Quality Control

Macalloy operates quality complying assurance system with the provisions of BS EN ISO 9001. Macalloy 1030 bars independently approved to requirements of BS4486. Macalloy 1030 system up to 40mm is independently approved requirements EAD 160004-00-0301. It is a prerequisite that the bars comply with the preliminary European standard prEN 10138.

The Macalloy 1030 Post Tensioning System European Technical Approval document ETA-07/0046 is available as a separate document.

The details within this brochure are in accordance with the current British and European Standards. The system also has approval to the National Standards in France.

In accordance with the requirements of EAD 160004-00-0301 a factory

production control test plan is implemented. Bars and fittings are routinely tested in accordance with this document.

Proof Loading: Facilities are available to load test tendon assemblies up to 2500kN in house or to greater capacities, out of house.

Table 3: Characteristic Loads											
Nominal	Nominal Failing Load 0.1% proof load										
Diameter	Macalloy 1030	Macalloy S1030	Macalloy 1030	Macalloy S1030							
mm	kN	kN	kN	kN							
20	-	323	-	262							
25	506	506	410	410							
26.5	569	-	460	-							
32	828	828	670	670							
36	1049	-	850	-							
40	1295	1295	1050	1050							
50	2022	2022	1639	1639							
75	4311	4311	3495	3495							

Working Load Factors

The working load factor to be used in a design is at the discretion of the Engineer but will normally be that specified in the appropriate Standard.

For prestressed concrete construction, the current standard for buildings is BS8110 and for bridges BS5400, which suggest an initial prestressing force of 70% of the characteristic failing load. For ties and similar applications in structural steel construction, the requirements of BS5950: Parts 1 and 2 apply.

Maximum prestress forces in accordance with EN 1992-1-1: 2004 Eurocode 2: Design of concrete structures, are given in the Macalloy 1030 Post Tensioning System European Technical document ETA-07/0046.

Ground anchorage design is dealt with in BS8081, which

gives recommended load factors for permanent and temporary applications.

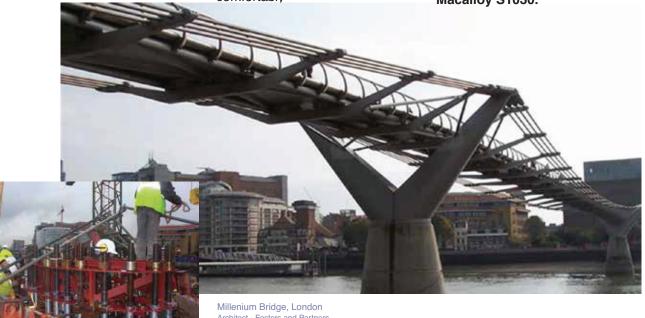
Properties

Extensive data and test reports on bars and components are available from Macalloy's Technical Department.

The main properties of the 1030 bars are summarised as follows:

Fatigue – threaded assemblies have a fatigue resistance in excess of two million cycles of loading over a tensile stress range of 590-670 N/mm², exceeding the requirements laid down in EAD 160004-00-0301.

Relaxation – the requirement laid down in BS4486 for the loss of stress due to relaxation in a bar loaded to 70% of its characteristic failure load, after 1000 hours at room temperature, is 3.5% maximum. This is comfortably


achieved by the 1030 bars, with typical results below 3.0%.

Anchorage strength – anchorage efficiency tests in accordance with the requirements of EAD 160004-00-0301 are carried out to verify that the failing load in the anchorage is not less than 95% of the actual failing load in the parent bar or 95% of the specified characteristic failure load. Anchorage testing also verifies that the ultimate failure occurs in the bar and is not influenced by the anchorage or coupler.

Stress Corrosion – Macalloy 1030 bars have been subjected to the F.I.P. standard stress corrosion test. No bars failed during the 200 hour duration of the test and subsequent tensile tests to failure showed no significant reduction in the ultimate or 0.1% proof stresses.

NOTE:

BBA Certification does not cover Macalloy 1030 75mm or Macalloy S1030.

Millenium Bridge, London
Architect - Fosters and Partners
Main Contractor - Monberg Thorsen and Sir Robert McAlpine

Engineer - Arups

Stress corrosion testing has also been conducted in accordance with pr EN 10138-4: 2005-2009 and satisfies the requirements in full.

Under normal circumstances, Macalloy 1030 is not susceptible to stress corrosion. Macalloy 1030 is, of course, subject to surface corrosion when exposed to moisture and deep corrosion pitting is harmful. Further data is available from the Technical Department.

Welding

Macalloy 1030 and Macalloy S1030 must not be welded, subjected to high local heating or splashed with weld metal.

Threads

A coarse thread is cold rolled directly on to the bar. Bars can be end threaded or fully threaded.

The bond value of the coarse

thread, when cast into concrete, or grouted into a preformed hole, complies with requirements for a Class 2 deformed bar. This is as per 8110-1:1997 Section 3.12.8.

Short, fully threaded bars can be used satisfactorily for short tendons and bolts, as loss of load due to 'take up' in the threads on transfer of load, is minimised by the controlled limits on clearance, between internal and external threads.

Wind Turbines, Uljabuouda, Sweden Foundation Sub-Contractor – Peikko Sverige Turbine Manufacturer – Dynawind AB, Sweden Client – Skellefteå Kraft AB

Protection Against Corrosion

For normal prestressed concrete construction, the alkaline environment, provided by a layer of cement grout, injected into the duct enclosing the bar gives good protection.

If bars are used in any exposed application, corrosion protection is essential for Macalloy 1030 and can be advantageous for Macalloy S1030.

The type of protection will be governed by the conditions of exposure, appearance and cost. Amongst the available options are:-

- paint systems (comprising of primer and one or more finishing coats)
- grease impregnated tape wrapping
- adhesive coated plastic tape wrapping
- shrink wrap
- · plastic tubing
- ridged plastic tubing, with injected grease or grout.
- · Thermal metal spray

Macalloy 1030 should never be galvanised.

Two or more of these systems may be combined, to enhance the degree of protection.

Particular care is always needed at end connections and coupled joints, to ensure continuity of protection, over the whole tendon.

Advice is available from Macalloy's Technical department.

Torque Loadings

Macalloy 1030 bars are also used for non post tensioned concrete applications, which require only a relatively small tensioning load.

For these applications, it is possible to develop a load in a Macalloy bar up to 25% of the characteristic failure load, by applying a predetermined torque to the Macalloy nut. Torque wrenches are available from Macalloy that have a dial, indicating the torque value exerted, or which can be preset to slip at a specified torque value.

The axial tension, induced by a given torque, depends upon the diameter and pitch of the threads and upon the friction within the threads and between nut, washer and end plate. Accuracy of the tensile force cannot be expected to be more than ±25%.

The relationship, between the torque applied to a nut bearing onto a standard washer and the resultant load, is as shown in Table 4.

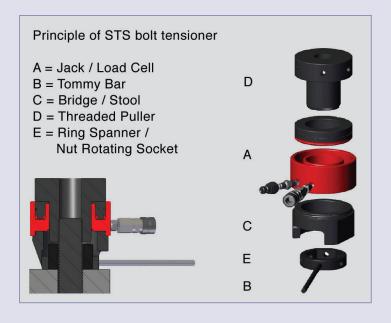
Table 4: K Values for Macalloy Coarse Threads										
Torougo (New) DvD	Bar Diameter mm	K								
Torque (Nm) = PxD	25	4.1								
K	26.5	4.3								
Where	32	4.7								
P is desired axial load in kN	36	4.9								
D is the nominal bar diameter in mm	40	4.5								
K is a constant obtained by test measurements	50	4.1								
	50									

Stressing Procedure

Hydraulic jacking equipment is available to apply load to the bars. Jacks are provided, with gauges calibrated against a certified load cell, available, to drive the full range of to register the force exerted on the bars. In addition, load cells are available to give an independent check on the accuracy of the pump gauge, if necessary.

Anchorage recess dimensions must give clearance for the stressing bridge or stool, to seat on the end plate and for access to the ring

or box spanner, to tighten the nut. Clearance is also required on one axis for the hose connections to the body of the jack.


Hand and air operated pumps are jacks.

Stressing procedures and jack details are available from Macalloy's Technical Department

Customer: Hollandia UK Ltd Project: Ipswich Tidal Barrier

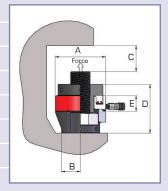

Macalloy require 3 weeks-notice to calibrate equipment and assign personnel, for assistance it always advised to contact Macalloy early in the design of the project phase to provide advice on the tensioning procedure.

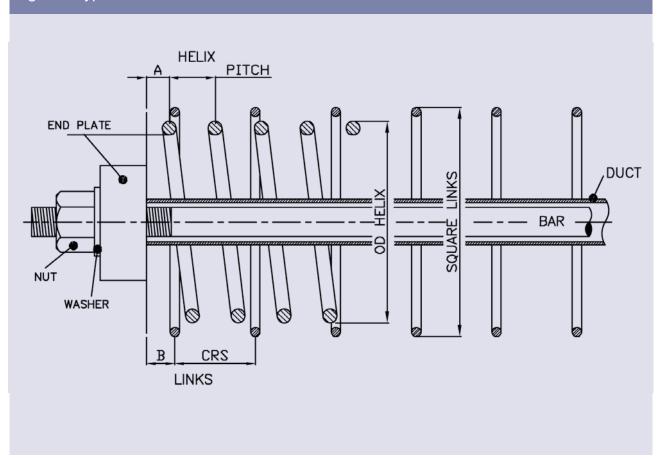
Figure 1 Jack details

Table 5: Jacking Dimensions

		Dimen	sions in	ММ		
Ref	Max Load (KN)	Α	В	С	D	E
M1 for 20.0 Diameter Bar	234	74	30	80	98	45
M2 for 20, 25 & 26.5 Diameter Bar	457	102	39	103	128	54
M3 for 32 & 36 Diamenter Bar	822	133	50	117	155	56
M4 for 36 & 40 Diameter Bar	1264	163	62	135	165	57
M5 for 40 & 50.0 Diameter Bar	1833	193	73	145	187	60
M6 for 50 & 75.0 Diameter Bar	2649	233	105	205	257	64
Please contact Macalloy for details of 3000kn jacks if required	3000					

Jack size may be changed to suit loads required, however other tensioning equipment may need to be manufactured.

	Item	Unit	t			Nomina	al Bar Diame	ter -mm		
			20	25	26.5	32	36	40	50	75
Bars	Sectional Area	mm²	322	530	572	847	1075	1320	1963.5	4185.
	Mass per metre	kg	2.57	4.17	4.49	6.65	8.44	10.36	15.66	32.86
	Metre run of bar per tonne	mm²	404	246	219	150	118	96	62	30
	Characteristic failing load	kN	314	506	569	828	1049	1295	2022	4311
	Prestress at 70% characteristic	kN	220	354	398	580	734	907	1415	3018
lat Nuts* ††	Nut reference		FSSN20	FN25	FN26.5	FN32	FN36	FN40	FN50	FN7
	Length	mm	25	34.5	38.5	43	48	53	73.5	100
	Wide across flats (DIA for 75mm bar)	mm	42	46	50	56	62	72	90	135
lat Washers*	Washer reference		FSSW20	FSW25	FSW26.5	FSW32	FSW36	FSW40	FSW50	FSW
	Outside diameter	mm	50	60	65	70	75	90	105	-
	Thickness	mm	5	5	5	5	5	5	5	-
Couplers ††	Coupler reference		FSSC20	FC25	FC26.5	FC32	FC36	FC40	FC50	FC7
	Outside diameter	mm	35	42.5	42.5	50	57.5	62.5	76	110
	Length - standard	mm	-	85	90	115	130	140	170	230
	Length - stainless	mm	65	80	-	95	-	120	-	-
ind Plates	Plate reference		FSSP20	FPP25	FPP26.5	FPP32	FPP36	FPP40	FPP50	FPP
	Length	mm	100	100	110	125	140	160	200	300
	Width	mm	100	100	110	125	140	160	200	300
	Thickness - standard	mm	25	40	40	50	50	60	60	75
	Hole diameter	mm	24	34	36	41	45	51	61	82
	Thickness - threaded	mm	0	40	40	50	60	60	70	110
Oucts**	Recommended Duct ID	mm	30	38	40	48	54	60	75	109
			LARGER DIA	METER DUC	CTS MAY BE R	EQUIRED LO	OCALLY TO A	CCOMODATI	E COUPLERS	S.
Threads	Pitch	mm	2.5	6	6	6	6	8	8	8
Standard thread	Length - jacking end (standard) S1	mm	250	250	250	250	250	250	250	360
engths (see fig 2)	- Dead end (standard) S2	mm	100	100	100	100	100	100	100	160
	- Coupler (standard)	mm	40	45	50	60	65	75	85	150
	X1 (MIN)	mm	75	90	100	120	125	140	175	240
	X2 (MIN)	mm	42	49	53	57	62	71	91	116
	X3 (MIN)	mm	12	12	12	12	12	16	16	16


Figure 2 End thread dimensions

dead end jacking end = live end 25 = dead end S1 length of bar past Х3 nut or threaded plate = 12 for 6mm 16 for 8mm = live end thread S2 = dead end thread L X1 = length over plates

^{*} Spherical nuts and washers are available to accommodate rotation if required. †Available in stainless grade only.

** Note Duct size does not accommodate a coupler †† Dimension for stainless grade differ contact Macalloy for details

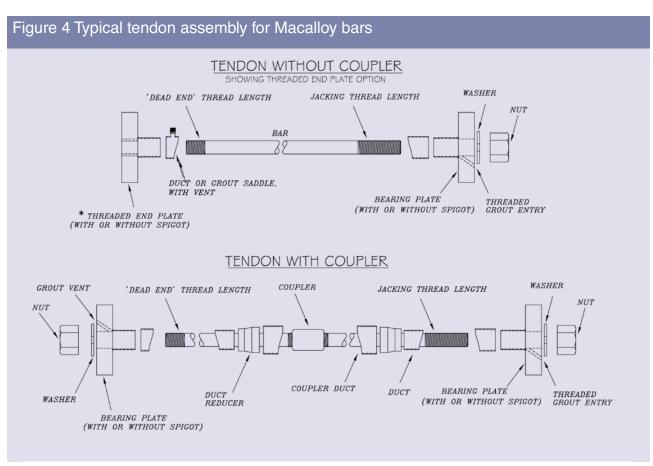
Figure 3 Typical end block reinforcement

Table 7	Reinfo	orcen	nent deta	ils							
Macalloy			HELIX					RECOMMENDED DUCT INSIDE			
dia. mm	Bar	Α	Pitch mm	OD	Turns mm	Bar	В	CRS mm	SQU	Number	DIAMETER
25	12	20	40	175	4	8	25	70	199	6	38
26.5	12	20	40	180	4	8	25	70	205	6	40
32	12	20	40	190	5	8	30	70	216	7	48
36	12	20	40	210	6	8	30	70	235	7	54
40	12	20	40	240	7	10	35	75	265	8	60
50	12	20	40	300	8	12	40	80	330	9	75
75	16	30	50	450	8	16	50	100	490	10	109

Anchorage Zone Reinforcement

Bursting tensile forces are induced, in the concrete, immediately behind the anchorage end plates, due to the compressive load applied through the end plates. Reinforcement in the form of links, helices, or a combination

of these, should be provided in each end block. The design of the anchorage reinforcement is covered by Section 4.1 of BS8110 and described in greater detail by CIRIA GUIDE 1- June 1976.


Macalloy does not design or supply the helical reinforcement. A more detailed explanation of the Macalloy Post Tensioning System, including Anchorage Zone Reinforcement, is available in the Macalloy Design Data Handbook. Contact the Technical Department for further information.

Detailing

There are many permutations possible, to achieve satisfactory construction details and advice is readily available from the Technical Department.

Figure 4 shows typical tendon assemblies.

A more detailed explanation of the Macalloy Post Tensioning System is available in the Macalloy 1030 European Technical Approval, document ETA-07/0046.

^{*}Threaded end plate not currently part of European Technical Approval

Site Services

Macalloy Site Services offers a wide range of hydraulic jacks, pumps and torque wrenches, plus the patented Macalloy TechnoTensioner, which enables the stressing of every type of bar and tendon that is produced by Macalloy.

Services offered by Macalloy Site Services includes advice and supervision, on and off site training or complete site stressing.

Should you require your own technicians to carry out the site stressing then all equipment can be hired directly from Macalloy. For further information on Macalloy

Site Services please contact the Technical Department.


Applications

Macalloy bars were developed, initially, for use in prestressed concrete construction but have been adapted for many structural applications. Among these are:-

- · Stressed connections
 - -concrete to concrete
 - -concrete to steel
 - -steel to steel
- Prestressed block and brick construction
- · Anchor bolts for tension ties
- Holding down bolts
- · Friction grip bolts and clamps

- Hangers
- · Structural steel frame ties
- · Ground and rock anchorages
- · High strength portal, ground or sheet pile ties
- Temporary or partial prestressing
- · Pile testing

This publication provides the technical details currently used by Macalloy in the manufacture of its components. The company reserves the right to amend technical details as and where necessary in line with its policy of continuous development.

Macalloy, Caxton Way, Dinnington, Sheffield S25 3QE, U.K. Tel: +44 (0)1909 519200. Fax: +44 (0)1909 519201

is a Registered Trade Mark of McCalls Special Products Ltd.